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ABSTRACT

We present a new approach for analyzing local power law processes and apply it to temperature measurements from
the upper atmosphere. We segment the data and use the wavelet scale spectrum to estimate the parameters of the
power law, the scale factor and the exponent. These parameters vary from segment to segment. Part of this variation
is due to the non-stationarity of the data. Another part is due to estimation errors that depend on the segmentation.
In this paper show how to remove effectively these segmentation dependent variations.
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1. THE DATA SET

We will analyze temperature data obtained by the Air Force high-altitude laser propagation and turbulence data
collection effort. For a detailed discussion of recording procedures and analysis see.! Here we take the data as our
starting point and examine what analysis reveals about their structure. We are interested in particular in accounting
properly for nonstationary effects. In Figure 1 we show the temperature data, which has approximately 5.6 x 10°
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Figure 1. Top figure: the raw temperature data over the first 84km out of a 112km record, subsampled 1/50. The
spatial resolution of the data is approximately 2cm.

points. The data is, of course, quite noisy and it is part of our task to remove noise effects in the estimation process.
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2. WAVELET ANALYSIS

Let X = (ao(1),ao(2), ..., a0(2M)) denote the data, the temperature recordings. It is convenient to work with data
vectors whose length is a power of two because computations are faster for them. In our case M is between 22 and
23 and we shall work typically with vectors of length 222 = 4194304, corresponding to the first 84km section of the
112km data set. We want to carry out a spectral analysis of X and to fit the estimated power spectral density to
a power law. For this purpose scale spectra, rather than Fourier spectra, are a more flexible tool and we will use
them here.*°

From the signal we construct successively its wavelet coefficients with respect to the Haar basis as follows. Let

a(n) = —=(ao(2n) + as(2n — 1)) (1)

-%

di(n) = —(ao(2n) —ae(2n—-1)), forn=1,2...,2M"1 (2)

S

be the smoothed signal and its fluctuation, or detail, at the finest scale. Note that the detail vector dy contains every
other successive difference of the data. This process of averaging and differencing can be continued by defining

as(n) = %(al(?n)—i—al(?n—l)) 5

din) = (@ @n)—m@n=1)), forn=12.,2"" "
and in general

ag(n) = %(ak_1(2n)+ak_1(2n—l)) %)

di(n) = —=(ap_1(2n) — ax_1(2n— 1)) , forn=1,2.,2M* ®)

V2
for k = 1,..., M. The data vector X can then be reconstructed from ans,dpr,dpr—1, ..., d1 since from equations (1)
we have

ag(2n) = (a1(n) +di(n)) (7)

DO

ap(2n—1) = E(m(n)—dﬂn)), forn=1,2...,2M~1 (8)

and now a; can be replaced by sums and differences of a5 and ds, etc.

The scale spectrum of X, relative to the Haar wavelet basis, is the sequence S; defined by

2M—J
1 L
Si= gy 2 (di(n)? G= 12 M )
n=1

It is casily verified from the definitions above that the {2 norm of the data vector X can be written as

> (ao(m)* = (aar)* + 3275 (10)

which is another way of expressing the orthogonality of the decomposition of X into apr and the d;, 7 =1,..., M.

The scale spectral point S; is the mean square of the detail coefficients at scale j. The spectrum can therefore
be interpreted as representing the energy of the signal in the different scales.

In Figure 2 we show the first 20km of the temperature data along with dy,ds,ds,d7,dg, d11,a12. The detail
coeflicients dj carry information about the data on larger scales as k increases. For example, d7 shows successive
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Figure 2. Haar wavelet coefficients for the first 21km of the data. The top left figure is the temperature data. The
one below it is the di detail coefficients. The third from the top is the d3 and the bottom the dy detail coefficients.
Note that the 4km burst seen in dj 1s not visible any more at the ds level, after four successive averagings of the
data. The top figure on the right is the a15 coefficients and below it d7,dy, d11.

differences of the temperature over distances of 2.56m, after averaging over successive segments of length 1.28. Thus,
as k increases the data are lowpass filtered with a filter of decreasing bandwidth and then subsampled before the
differences are formed. It is clear that the visible periodic components seen in the d; coefficients cannot be attributed
to turbulence or larger coherent structures in the atmosphere. In the estimation of atmospheric turbulence parameters
these spurious features must be suppressed. In ds, - - - the high frequency periodic noise component seen above has
been effectively suppressed by the lowpass filtering.

3. THE SCALE SPECTRUM

Our main objective is now to examine whether the data can be well modeled by a ‘power law’ model over a subrange
of scales. A process X (z) whose structure function has the form

E[(X(x1) = X(22))*] = oy — a7 . (11)

is a power law or a self-similar process which 1s not stationary but has stationary increments. For such a process, the
scale spectrum S; is linear in a log log plot, when the record is very long. In Figure 3 we show log log plots of scale
spectra for the temperature data over nonoverlapping segments of the data, with each segment having length 655m.
Each plot contains scale spectral points over 15 scales, that is the mean square of d;; 1 < j < 15. This corresponds
to length scales from I; = .04m to l;5 = 655m. We take as abscissa the spatial frequency K

K; = ll =50 277 [rad/m)]. (12)
J
Note that the scale spectra show a distinct departure from power law behavior for scales below one meter (K = 1).
For larger scales, power law behavior may be considered in the range between 2.5m to 80m (.01 < K < .5), which
corresponds to the detail coefficients dy to d15. Of course, the estimated intercept and slope of the log scale spectra
depend on the particular segment of data used. We want to identify the part of this variability that is due to the
nonstationarity of the process and minimize variability due to estimation errors.

Before we continue with the scale spectral analysis we note the following.
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Figure 3. Scale spectra of 655m nonoverlapping segments of the data (2! points per segment) obtained from the
Haar wavelet decomposition. The dashed line has slope —5/3 as in Kolmogorov spectra. The solid line is the average
over the scale spectra of the different segments. After the averaging is done the scale spectra are plotted in log-log
format.

e Noise bursts in the data enter only in some of the detail coefficients, as can be seen from Figure 1. By restricting
power law modeling and fitting to scales corresponding to dy, - - -, d1; the influence of these bursts is effectively
eliminated.

e The temperature data are not a stationary time series and they do not have stationary increments. Computing
scale spectra over long segments, in which the process cannot be taken as stationary, gives a quantity that is
hard to interpret. Even though the average slope of the log scale spectra over several segments is close to —5/3,
as the theory of turbulence predicts, there is a lot of variability. A local power law model is likely to fit the
data better than the idealized power law model, with stationary increments.

We must therefore deal with a larger class of models, local power law processes, and find effective ways to estimate
them. We will base our analysis on two criteria. One is that the estimation of parameters should not depend on how
the data is segmented. The second is that the variations of the slope and intercept for the log scale spectra must be
on length scales that are much longer than those used to compute the spectra themselves. We will show with our
analysis that both criteria can be met.

3.1. STOCHASTIC MODELING

To illustrate how we cope with non-stationarities consider first the stationary increments case with the process having
the structure function (11). Over a suitable range of scales, the mean of the log scale spectrum over a long enough
segment is

ElIn(S;)] ~ c¢—pln(K;)

with p = —(2H + 1), ¢ = ¢(H, o) a known function,'® and K; the spatial frequency (12).

Consider a data record of total length 2 segmented into sections of length 2%. The (log) spectral points in each
segment ¢ have the form

ln(S;») = c—pln(Kj)—i—w; (13)



The spectral point ln(S;») is a random variable and wé» is its zero mean random component that depends on both
segmentation and scale. By least squares linear fit of the log scale spectra over a suitable range of scales we get
estimates of the log-intercept and slope for each segment. These give two processes, one for the slope and one for

the log intercept, whose size is 2 =% the number of segments. Let the slope process {]52} be given by
po= p+d (14)

with v the random component that depends on the length of the segment. Since the estimates are over disjoint
sections the v* will be almost uncorrelated and we obtain an improved estimate with

2M—k

po= >, p /2" (15)

i=1

Assume now that we are interested in a fized set of scales and compute the estimate (14) for various segmenta-
tion lengths (k’s). Then the improved estimate (15) and its precision depend only marginally on the particular
segmentation k. That is, the resulting estimate is not very sensitive to the segmentation of the data.

We now generalize the above to a local power law. We model the log scale spectrum by letting
ln(S;.») = ¢ —p In(K;) + w§

with ¢’ = ¢(z;) and z; the centerpoint of segment i. We model ¢ and p as stochastic processes with spatially varying
means but stationary residuals, and with continuous auto-correlation functions. We assume, moreover, that the local
power law process itself is conditionally independent of the parameter processes. Our objective is estimation of the
parameter processes. We assume that the segmentation length 2% is short relative to the scale of variation of the
parameters. Let p' denote the estimate of p(x;) based on linear regression of ln(S;») (with respect to scale), as in
(13). To obtain an improved estimate of p(z), as in 13, we average or filter the process p(z). The objective here is
to minimize the effect of the sampling residual w; The filter will depend on the stochastic structure of p(z). The
improved estimate can now be expressed as

Fo= S N0 (16)

with Ai({) the filter coefficients. After filtering, the estimates of the slope and log intercept are much less sensitive
to the segmentation, since these are chosen to be short relative to the scale of variation of the parameters. The filter
in (16) is given explicitly below.

3.2. SEGMENTATION DEPENDENT ESTIMATION

We begin by selecting four segmentations and estimating slopes and intercepts for the scale spectra obtained for each
segment, as shown in Figure 4. The four segmentations are:

160m (2'? points), 327m (2'%), 655m, (2'%), 1.31km (2'%).

There are 512, 256, 128, 64 nonoverlapping segments, respectively, in each case. Within each segment we use only
scale spectra from d7 to dy1, corresponding to length scales between 2.5m and 80m. We limit the longer scales to
40m, well below the shortest segmentation length which is 160m. We limit the shorter scales to 2.5m because, as
can be seen from Figure 3, below that scale the spectrum changes and power law fit is not appropriate. The fitting
is done by a generalized least squares linear regression model

log 8! & ¢ — pilog(Zr) | j=T7,8, .11

og ]Nc_p Og(%), J =108,

for each segment i, and the units are adjusted so that the horizontal axis is in kilometers.

We see from Figure 4 that the estimated slopes, p, and the log intercepts, ¢, vary considerably over the 80 kilometer
data set. They also depend on the segmentation, with the finer one having larger fluctuations (dotted lines). We
next carry out the filtering, as indicated above, in order to remove the sampling variability that is segmentation
dependent.
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Figure 4. Top figure: slopes of log-log scale spectra from wavelet decompositions based on four different segment
lengths. At the finest resolution the scale spectra are calculated over nonoverlapping segments 160m long. This is
the dotted line that has the largest variations. At the next resolution the nonoverlapping segments are 327m long
(also plotted with a dotted line). The other two resolutions are 655m and 1.31km and are shown with dashed and
solid lines, respectively. The bottom figure is the same as the top but now for the log intercept of the scale spectra.

3.3. REMOVAL OF SEGMENTATION EFFECTS

Our objective is to remove, to the extent possible, the effects of the segmentation dependent sampling variability in
the parameter estimates. Recall that the parameters are modeled as

P p

for the slope, with ' the noise to be filtered out. We shall construct the filter to give the minimum variance unbiased
estimates for the parameter processes p* and v*. For this we need the parameters in the stochastic models for these
processes. We assume that the slope process is exponentially correlated. We need, therefore, its correlation length
l, and its variance o2, in addition to the location dependent mean (p;). Then

p )
Elp] = pi (17)
El(pi —pi)(p; — 2;)] = opexp(=Lli—jl/l,)
with L the length of the segments. Note that this model is intrinsic to the process and does not depend on the
segmentation. As discussed above we shall model the sample noise process {v;} as white, so we only need its level
o2
Before estimating these model parameters we discuss the filter that is defined in terms of them. Let P= (ps) be
the vector of estimates, P = (p;) the realization of the slope process and P = (p;) the mean. Then the filter T is a
matrix that transforms P into I'P in such a way that

E[|ITP — P

is minimized over all matrices T that also preserve the mean P pf P, that is TP = P. Let C) be the covariance
matrix of P (determined by o, & ,), then it easily follows that

A = (Cp+ N0, +ul @ P)



where the vector u = (u;) is given by

P;

Uj

—?(C —1—0’2[)_101”'
P’(

C, 1+ o2)-1P

Here Cj, ; is the i—th column of the matrix €}, and the superscript 7" stands for transpose. The slope and log intercept
processes are filtered separately. Filtering of this kind is discussed in.”

Having defined the filter we next discuss estimation of the model parameters involved in its definition. We can
extract from the slope and log intercept process of Figure 4 the smooth, background variations. This defines our
estimate of P in the case of the slope process as well as the log intercept process. It can be done with a simple
moving average but we used a three term matching pursuit® procedure.

We estimate the parameters of,, l, and o2 using the empirical variogram. For a time series X = (X;) of size N
the empirical variogram with lag j is defined by

N-j

V(i) = (Xktj — (18)

with dependence on the length of the data vector N not shown. Observe that since the mean of P varies slowly
relative to the sampling interval, the empirical variogram is essentially unaffected by variations in the mean. The
mean of the empirical variogram for the slope process P is

EV()] = ojexp(=Lli—jl/ly) + o}

and from this follow the parameter estimates by fitting to the empirical variogram. In particular, ¢2 is given by
the vertical intercept since, according to our assumptions, the process {v;} is white. This will be Verlﬁed by the
simulations in the next section and is supported by our analysis in.!® The estimated parameters are as follows:

e For the slope: Vertical intercept o2 = 0.09, horizontal asymptote level 02 + o2 = 0.21, and correlation length
640m (four segment lengths).

e For the log intercept: Vertical intercept o2 = 0.13, horizontal asymptote level 02 +0? = 1.83, and correlation
length 480m (three segment lengths).

The variogram was also computed for the other segmentations and gave consistent values. However, for the coarsest
segmentation the assumption that the correlation length is much larger than the segment length is violated and the
parameter estimates become less precise.

Based on the estimated model parameters we can carry out the filtering to get a better estimate for the slope
and log intercept processes. In Figure 5 we show these filtered slope and intercept processes. Note that after the
filtering all four segmentations give essentially the same result. This is a very strong indication that the model we
have chosen and the analysis that we have followed fit the aerothermal data very well. Recall, however, that the
correlation length of the slope and log intercept processes were approximately 500m. Therefore, when the spectrum
parameters are estimated based on the two coarsest segmentations (655m and 1.3km), they are smoothed somewhat
and the estimates do not represent their variability faithfully. This is verified by Figure 5, since the two dotted
curves, corresponding to the coarser resolutions, are somewhat smoothed versions of the solid line that corresponds
to the two finest resolutions.

4. SIMULATION AND MODEL VALIDATION
4.1. CONDITIONAL SIMULATION

We next simulate synthetic temperature profiles using the parameters estimated above. Qur objective is to examine
the modeling assumptions used above and also the accuracy of the estimates. The simulations will be conditioned
on the slope and log intercept processes of Figure 5. In the next subsection we contrast these simulations with those
based on simulating from the full model, that is with slope and log intercept processes drawn from the model (17).
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Figure 5. Filtered slope (top) and log intercept (bottom) processes of the actual data for the four different
segmentations. Note that all four segmentations of the filtered processes are essentially the same. The solid and
dashed lines correspond now to the two finest resolutions and are indistinguishable. The dotted curves correspond to
the two coarsest segmentations and are slightly smoother versions of the other curves. The filtering has eliminated
the differences in the slope and log intercept processes that are due to the segmentation (as in Figure 4) by removing
the white noise component of the slope and log intercept fluctuations that is due to sampling.

The realizations that we generate are Gaussian, local power law processes. The realizations have common features
with the data shown in Figure 1. However, the noise in the measurements makes a direct comparison difficult. Recall
that we only aim at modeling the data on a subset of scales, the scales corresponding to d7 — d11. A better way to
compare the processes is when both have been scale filtered so that only scales d7 — dq1 contribute. This correspond
to length scales in the range 2.5 — 80m, which are the ones we used in estimating slopes and log-intercepts of the
power law. Figure 6 shows the results. The similarity between the processes is striking.

The slopes and log-intercepts processes of Figure 4 are obtained by fitting the log scale spectra from d7 — di1,
in each segment. We measure the error in the fit by the sum of squares of the differences of the log spectra from
the fitted line. This quantity provides another way to test our modeling. The discrepancy in each section defines a
random process. If indeed the measured data can be regarded as a realization from the model this discrepancy should
be similar for measured and synthetic data. In Figure 7 we plot the discrepancy corresponding to the measurements
and also a realization, both normalized by the mean of the discrepancy of the latter. They are similar, supporting the
conclusion that over the targeted set of scales the temperature data is modeled well by the local power law process.

Consider the model for the temperatures defined by letting the slopes and log-intercepts be the smooth ‘back-
ground’ processes. Is this a better model for the temperatures? We examine this by calculating the same quantity as
in the previous Figure, the discrepancy between the data and a realization from this alternative model. The result
indicates that this is not a better model since the discrepancies are now very different.

Consider now the simulated data. We can analyze them in the same way as the measured data and get estimates
of the slope and log intercepts of their scale spectra. We present the correlation structure of the parameter processes
estimated in this way in Figure 8. The correlations are calculated using the empirical variogram. The stars in the
plot corresponds to calculating the variogram of the difference between the estimated parameters and the specified
ones. This corresponds to what we referred to above as sampling error. As expected the sampling error is essentially
a white noise process. The crosses in the Figure are the variogram of the slope process relative to the smooth
background. The solid line is the fitted model. There are to parts to it, the sampling noise part (the intercept) and
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Figure 6. The actual temperature data set (top figure) obtained by synthesizing it from the detail coefficients
d7 — dq; of its Haar decomposition. It is information from this range of scales that enters into the slope and intercept
processes. The bottom figure is the same as the top but for the simulated data. Note the striking similarity between
the two figures.

the exponential part corresponding to intrinsic variation in the parameters. The intercept part is seen to match well
with that obtained for the sampling noise of the synthetic data. The match for the exponential part is not so good.
This is because the filtering that suppresses the sampling noise also smooths out some of the intrinsic variation in
the parameters. This is seen from the circle plot in Figure 8 showing the variogram for the specified parameters.
The fit is now much better.

Let us also comment on the accuracy of the parameter estimates. We do this by simulation. The standard
deviation between the specified and estimated parameters for the slope and log-intercept estimates are .08 and .2,
respectively.

4.2. REPLICATION FROM THE FULL MODEL

We now simulate the temperature data from the full model, that is with the slope and log intercepts sampled from
from 17 with the estimated model parameters. Two realization are shown in Figure 9, middle and bottom part. The
parameters of the realization shown on the top plot, corresponding to a conditional simulation, are overly smoothed
because of the filtering. The realization of this section will therefore have more variability. This is seen in Figure 10.
Clearly the differences for the full simulation (bottom) plot are more variable than those for a realization conditioned
on the filtered parameter sequences (top plot).

5. SUMMARY AND CONCLUSIONS

The main premise driving our analysis of temperature data from a turbulent atmosphere is that it is a local power law
process. This means that the power law itself (the exponent (slope) and the multiplicative constant (log intercept))
are not constants but slowly varying functions. We estimate the slope and log intercept of the scale spectrum by
appropriately segmenting the data and then removing segmentation effects by a filtering process. The slope and
log intercepts themselves are modeled as stochastic processes. We generate synthetic temperature in two different
ways. First, the local power law process is simulated conditioned on the particular parameters estimated from the
data (slope and log intercept). Then we get a faithful replication of the temperature data. Second, the parameters
are taken as random, that is sampled from their model. Then the simulation is sample-wise very different from the
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Figure 7. Top: The ratio of the {? norm of the difference between the log-log scale spectrum and the power-law fitted
log-log spectrum for the actual data (finest segmentation, 213 points each) over the mean (over the 512 segments) of
the {2 norm of the difference between the scale spectrum and the power-law fitted spectrum for the simulated data.
Bottom: Same as for the top figure with only simulated data. The scale spectrum corresponding to d7 to di; is used
in calculating the [2 error and in the power law fit. This contains information in the data over length scales of 2.5m
to 80m.

actual data, but the statistics are faithfully reproduced. This and the removal of segmentation effects is a very strong
indication that the model and the analysis that we have followed capture the essential features of the data.

An important aspect of the model that we use is separation of scales in the variation of the estimated parameters
(slope and log intercept) from the underlying process that generates the power law spectra. The wavelet transform
plays, moreover, a central role in our analysis.
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Figure 9. Two different realizations of simulated temperature data (top and bottom figures) in which the slope and
log intercept are Gaussian stochastic processes with the estimated model parameters. The slope and the log intercept
fluctuations are generated from the same white noise sequence that is independent of the power law process.

Dissipation for conditional simulation (top) and for 2 realizations full simulation
02 T T T T T

0 L L L L L i g ﬂ lxl o
60 70 80

[km]

0.2

0.1f bl

0 " L L L il L " Au

0 10 20 30 40 50 60 70 80 90
[km]

0.2

0.1r 4

0 d | | | | | | m 1 -

0 10 20 30 40 50 60 70 80 90
[km]

Figure 10. Absolute values of temperature differences for the conditional simulation with deterministic slope and
intercept (top figure) and for the top of Figure 9 (bottom figure).



